

UNEDA Cardinal Alternative

Ranking Layer Specification

Universal Engine for Decision Analysis

Version 7.21

The CAR (Cardinal Alternative Ranking) layer is implemented on top of UNEDA

DTL. It is not a part of DTL and cannot access its data structures. It is,

however, linked together with DTL into the UNEDA platform.

The UNEDA software is licensed under Creative Commons CC BY 4.0. It

is provided "as is", without warranty of any kind, express or implied.

Reuse and modifications are encouraged, with proper attribution.

The layer enables the standard DTL evaluation functions after the CAR data

has been entered using the functions below.

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 2 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

CONTENTS

CAR layer notes ... 3
Data types .. 4
Start CAR layer ... 4
Stop CAR layer .. 5
Set compatibility parameters .. 5
The CAR weight ranking process .. 5
Set CAR weight base (cardinal) .. 6
Open CAR partial weight hull process 7
Close CAR partial weight hull process 7
Check CAR partial weight hull statement 8
Add CAR partial weight hull statement 8
Set CAR probability base (cardinal) 9
Set CAR value base .. 9
Set CAR weight base (distance) ... 10
Set CAR probability base (distance) 10
Error handling ... 11

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 3 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

CAR layer notes

The CAR layer is a syntactic sugar layer, unlike UNEDA DTL which hosts

the base functionality including data integrity and consistency

checks. CAR has no knowledge about the inner functions of DTL, no more

than any other caller has. CAR should be viewed as convenient sets of

call sequences that run in user mode, not system mode. Thus, the layer

has no access to the internal data in DTL. This leads to fewer error

checks being possible in the CAR layer and more structural control

being assumed of the API caller instead. For the same reason, make

sure never to mix CAR-generated statements with non-CAR data. This can

lead to inconsistencies from data having different origins and the CAR

layer has no way of knowing where data comes from.

The CAR data for weights are entered in two stages, first as relative

weights and then as partial hull weight verifications. The former

should be generated by a relative procedure such as swing, but there

is no way for CAR to ensure or check that. The latter stage works by

pruning the orthogonal hull around the two weights supplied in the

verification statement. It could be seen as a hull-trimming operator

in a way similar to how ordinary normalisation works. And in analogy,

ordinary normalisation does not guarantee that every pair of weight

combinations taken from the hull are feasible. Similarly, there is no

guarantee that weight combinations drawn from the pruned hull are

together compliant with the verification statement. Here, the analogy

does not continue since normalisation can also detect which combina-

tions of weights are feasible while there is no similar operator to

detect which combinations of partial weights have been verified or

not. Such an operator would have to be non-linear by design since the

verifications for intervals are ratios (w1/w2  v2/v1) which are

inherently non-linear. While the CAR layer can verify and prune the

hull, it is up to the API caller to ensure that the weights ultimately

are kept within the specifications supplied by the user.

Alternatively, the CAR layer can cut the hull to ensure that no points

where the ratios do not hold are included.

Thus, the partial hull procedure consists of the following steps:

1. Start with value differences v1 = v12-v11 and v2 = v22-v21.

 Assume that the user states that v1 is globally preferred to v2.

 Note that they originate from different criteria Cr.1 and Cr.2.

2. Compute the ratio between the value diffs (v1/v2).

3. Establish the corresponding ratio between the weights (w1/w2)

 such that on the MC scale the ratio is 1.0 or more (i.e. that the

 difference on the scale for Cr.1 is overall worth at least as much

 as that on the scale for Cr.2 when projected onto the common [0,1]

 MC scale).

4. Adjust (prune) the hulls of the weights w1 and w2 accordingly.

Step 4 is carried out by shearing into the hull boundaries w1
min and

w2
max so that v1∙w1 > v2∙w2 holds for consistent weight pairs w1 and w2,

either somewhere within the hull (prune) or in its entirety (cut).

Thus, while pruning is conservative, cutting is more radical.

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 4 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

Data types

The data types are piggybacked onto DTL, except for the input vectors to

the CAR calls which are defined locally in CAR.h.

#typedef int car_vector[MAX_CONS+1]

Start CAR layer

Call syntax: CAR_init(int method, int mode)

Return information:

OK -

ERROR – state error

 input error

Call semantics: Perform initialization of the CAR layer. This must be the

first call to CAR. The parameter ‘method’ controls the method for

generating surrogate weights and probabilities. 0 = ‘keep default method’

is strongly advised as the call parameter except for advanced research. The

default method is an adaptive cardinal version of the RX surrogate method.

If optional methods are desired, they should be set as follows (see

research papers for explanations):

 1 = CRS (cardinal version of the RS surrogate method)

 2 = CRR (cardinal version of the RR surrogate method)

 3 = CXR (cardinal version of the RX surrogate method)

 4 = CSR (cardinal version of the SR surrogate method)

 5 = CRC (cardinal version of the ROC surrogate method)

 5 = CXR (cardinal version of the XR surrogate method)

The parameter ‘mode’ controls the compatibility back to Excel versions of

CAR for DTL. ‘mode’ is also the toggle flag for some options. If optional

modes are desired, they should be set as follows:

 0 = standard modern CAR

 +1 = backward compatible weights with older Excel models

 +2 = backward compatible values with older Excel models

 +4 = CAR light mode -> partial weight hull runs without midpoints

These modes are configurational rather than user-specific.

NOTE: Never mix CAR-generated statements with non-CAR data. This can lead

to inconsistencies from data having different origins. Remember that CAR is

a syntactic sugar layer.

NOTE2: If CAR data has been generated with CAR_light=OFF, tornados with odd

mode numbers will automatically be used (no midpoints), since a full set of

midpoints cannot move around and would only result in empty tornados.

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 5 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

Stop CAR layer

Call syntax: CAR_exit()

Return information:

OK -

ERROR – state error

Call semantics: Perform closedown of the CAR layer. This function is void-

valued since nothing can go wrong.

Set compatibility parameters

Call syntax: CAR_set_compat(int w_unc, int v_unc)

Return information:

OK -

ERROR – state error

 input error

Call semantics: Sets the uncertainty levels for Excel compatibility with

older IIASA models. ‘w_unc’ is for weight statements and ‘v_unc’ is for

value statements. Valid input is between 0.01 and 0.20 (for ‘w_unc’) or

0.10 (for ‘v_unc’). Defaults are 0.10 for ‘w_unc’ and 0.05 for ‘v_unc’.

The CAR weight ranking process

The weight ranking process in CAR is a two-stage process in which the

weights are entered in the first stage and then verified/consolidated in

the second stage. The first stage is carried out in the user interface and

the results are added to the weight base using CAR_set_W_base. It is up to

the discretion of the API caller to ensure that the weights have actually

been generated using a relative process. This cannot be checked by the CAR

layer. In the second stage, the results from the first stage are verified

and consolidated by comparing parts of the scales in the user interface

(the first stage concerns the full scales) and then entering the results

into CAR. A structural pseudo-code for the two-stage process might look

like this (where jcall is a generic error-handling routine):

/* User value-setting interaction */

...

if (jcall(CAR_set_V_base(…)) < CAR_OK)

 handle_error();

/* Values completed – weight elicitation can commence */

...

/* User weight elicitation interaction */

...

/* Set the weight base */

if (jcall(CAR_set_W_base(…)) < CAR_OK)

 handle_error();

/* Loop through partial weight session */

if (jcall(CAR_start_W_phull()) < CAR_OK)

 handle_error();

while (user_wants_to_verify) {

 show_phull_opportunities();

 /* Establish which partial scales to compare */

 ask_for_phull_to_verify();

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 6 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

 load_uwstmt(&uwstmt);

 tradeoff = 0.0;

 if (jcall(CAR_check_W_phull(…)) < CAR_OK)

 handle_error();

 if (tradeoff < 1.0) {

 display("partial hull impossible - inconsistent due to too weak trade");

 display_graphics_feedback_1();

 }

 else

 rc = CAR_ prune/cut/equal_W_phull(&uwstmt);

 if ((rc < CAR_OK) && (rc != CAR_INCONSISTENT)) {

 jcall(rc);

 handle_error();

 }

 else if (rc == CAR_INCONSISTENT) {

 display("partial hull impossible - inconsistent due to mix of statements");

 display_graphics_feedback_2();

 }

 else {

 display("partial hull statement added to the weight base");

 display_graphics_feedback_3();

 }

 }

if (jcall(CAR_finish_W_phull()) < CAR_OK)

 handle_error();

/* Continue after partial hull session */

...

Allowing impure criteria trees (trees with mixed real and intermediate

nodes having the same parent) is not allowed from a conceptual point of

view. It is inconceivable that a decision-maker is able to compare worst-

to-best for compound weights -> those comparisons will instead invariably

and unfortunately be absolute weights, a fallacy shared with all other

products and tools on the market. The immediate and obvious remedy to this

dire situation is to have the UI draw the weights of an impure structure in

a tree format but keeping it a one-level structure internally. (Earlier, it

was feasible to allow the ranking of impure stakeholder weight trees

because CAR was also the mother layer for CSR rankings. This was, in

reality, the raison d’être for keeping the mode option.) Likewise, allowing

partial hull verification in impure trees is in theory highly problematic

for the above-given reasons. And while theoretically invalid, it still

works reasonably well in the code library. It is included for the tidiness

of the UI but is basically unsound.

NOTE: For CAR_set_W_base as well as CAR_check_W_phull and CAR_cut_W_phull

it is up to the API caller to ensure that the input data conforms to an

elicitation model where relative weights are obtained. The API caller must

keep track of the statements made by the user, and their integrity and

applicability. Plus ensure that they are part of a sound and solid relative

elicitation process such as swing. The CAR layer is not a part of DTL but

only a syntactic service layer with no more privileges than any other DTL

caller. CAR cannot inspect the DTL data structures for integrity or

conformity.

Set CAR weight base (cardinal)

Call syntax: CAR_set_W_base(int n_nodes, car_vector ord_crit, car_vector

rel)

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 7 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

Return information:

OK - number of statements added (also in ord_crit[0])

ERROR – not activated

 frame not loaded

 wrong frame type

 input error

 illegal tree

 inconsistent

Call semantics: Statements for all criteria with the same parent node are

added to the weight base at the same time. ‘n_nodes’ is the number of nodes

being compared in total. ‘ord_crit’ is a vector of node numbers from most

important to least important criterion. ‘rel’ is the relation between the

current node and the next, expressed as 0 for ‘=’ and 1-3 for ‘>’, ‘>>’,

and ‘>>>’ (entering -1 signifies that the rest of the nodes are nullified,

i.e. given the weight zero). It is presupposed that the relations have been

obtained by a relative elicitation process, thus representing relative

weights. Absolute weights should not be entered here (unless the option

mode +4 is activated) and cannot be subsequently verified by partial hull

statements later in the process. The number of added statements is returned

in ord_crit[0]. The base is checked for consistency with respect to all new

ranges. In case of inconsistency, nothing is added to the base.

Open CAR partial weight hull process

Call syntax: CAR_open_W_phull()

Return information:

OK -

ERROR – not activated

 frame not loaded

 wrong frame type

 not allowed

 inconsistent

Call semantics: The partial hull verification process is initialised. This

call must be made before any other partial hull function calls.

Close CAR partial weight hull process

Call syntax: CAR_close_W_phull()

Return information:

OK -

ERROR – not activated

 frame not loaded

 wrong frame type

 not allowed

 inconsistent

Call semantics: The partial hull verification process is completed. This

call must be made after all other partial hull function calls.

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 8 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

Check CAR partial weight hull statement

Call syntax: CAR_check_W_phull(struct user_w_stmt_rec* swp, real *tradeoff)

Return information:

OK - tradeoff updated

ERROR – not activated

 frame not loaded

 wrong frame type

 illegal tree

 input error

 inconsistent

Call semantics: A partial hull verification statement is checked against

the weight base. This must be done after the CAR_set_W_base() call, which

is step one in the weight ranking procedure. The check will do two things.

It will reveal any input errors in the fields and also whether a subsequent

call to CAR_add_W_phull() or CAR_cut_W_phull() will succeed. If the trade-

off is greater than 1, the verification will succeed provided the weight

base is clean, i.e. not mixed with other statements such as links. If, when

calling, the ‘tradeoff’ parameter contains -1.0 (or -2.0) then the maximal

(or minimal) global MC-scale trade-off for each weight is returned in their

respective fields in swp (which thusly are overwritten). For all other

values of ‘tradeoff’, the swp structure is left unchanged. If ‘tradeoff’

contains a negative value on return, the weight base contains elements that

originate from non-CAR calls.

Add CAR partial weight hull statement

Call syntax: CAR_add_W_phull(struct user_w_stmt_rec* swp)

Call syntax: CAR_cut_W_phull(struct user_w_stmt_rec* swp)

Call syntax: CAR_equal_W_phull(struct user_w_stmt_rec* swp)

Return information:

OK - number of statements added

ERROR – not activated

 frame not loaded

 wrong frame type

 illegal tree

 input error

 inconsistent

Call semantics: Partial weight verification information is added to the

weight base. This must be done after the CAR_set_W_base() call, which is

step one in the elicitation procedure. It is presupposed that the relations

in step one have been obtained by a relative process, thus representing

relative weights. The verification statements entered through this call

constitute step two of the same procedure. The statements are of the type

a∙wi > b∙wj for weights wi and wj, and constants a and b  (0,1] from the
elicitation process. The statement record is filled in the usual way,

except that a is stored in swp->lobo and b is stored in swp->upbo. Pruning

ensures that a∙wi > b∙wj holds for some consistent pairs wi and wj within

their respective hulls while cutting ensures that a∙wi > b∙wj holds for all

consistent pairs wi and wj within the hulls. The equal call verifies that

a∙wi ≈ b∙wj holds instead. In case of success, the number of statements

added to the weight base is returned. In case of success, the number of

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 9 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

statements added to the weight base is returned. In case of inconsistency,

nothing is added to the base. It is not left in an inconsistent state. This

call is for acknowledging a global value difference between consequence

midpoints or between numerically determined parts of two local value

scales.

Set CAR probability base (cardinal)

Call syntax: CAR_set_P_base(int crit, int alt, int n_nodes, car_vector

ord_nodes, car_vector rel)

Return information:

OK - number of statements added (also in ord_nodes[0])

ERROR – not activated

 frame not loaded

 input error

 criterion unknown

 not allowed

 alternative unknown

 inconsistent

Call semantics: Statements for all probabilities with the same parent node

are added to the probability base at the same time. ‘crit’ is the criterion

that the probabilities belong to. ‘alt’ is the alternative that all of the

probabilities belong to. ‘n_nodes’ is the number of nodes being compared in

total. ‘ord_nodes’ is a vector of node numbers from most probable to least

probable event. ‘rel’ is the relation between the current node and the

next, expressed as 0 for ‘=’ and 1-3 for ‘>’, ‘>>’, and ‘>>>’ (entering -1

signifies that the rest of the nodes are nullified, i.e. given the weight

zero). The number of added statements is returned in ord_nodes[0]. The base

is checked for consistency concerning all the new ranges. In case of

inconsistency, nothing is added to the base.

Set CAR value base

Call syntax: CAR_set_V_base(int crit, car_vector ord_alts, car_vector

ord_nodes, car_vector rel)

Return information:

OK - number of statements added (also in ord_nodes[0])

ERROR – not activated

 frame not loaded

 input error

 criterion unknown

 not allowed

 alternative unknown

 inconsistent

Call semantics: Statements for all values in a criterion are added to the

value base at the same time. ‘crit’ is the criterion that the values belong

to. ‘ord_alts’ is a vector with the alternative each consequence value

belongs to. ‘ord_nodes’ is a vector of node numbers from most valuable to

least valuable consequence. ‘rel’ is the relation between the current node

and the next, expressed as 0 for ‘=’ and 1-9 for ‘>’, ‘>>’, etc. The number

of added statements is returned in ord_nodes[0]. The base is checked for

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 10 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

consistency with respect to all new ranges. In case of inconsistency,

nothing is added to the base.

Set CAR weight base (distance)

Call syntax: CAR_rank_W_base(int n_nodes, car_vector ord_crit, double dist)

Return information:

OK - number of statements added (also in ord_crit[0])

ERROR – not activated

 frame not loaded

 wrong frame type

 input error

 illegal tree

 inconsistent

Call semantics: Statements for all criteria with the same parent node are

added to the weight base at the same time. ‘n_nodes’ is the number of nodes

being ranked in total. ‘ord_crit’ is a vector of node numbers from most

important to least important criterion. ‘dist’ is the distance between the

intervals of two adjacent weights. ‘dist’=0 yields adjacent intervals,

‘dist’>0 yields a gap between the intervals (with 1 yielding intervals of

width zero), and ‘dist’<0 yields an overlap between the intervals (with 1

yielding intervals of double width). The number of added statements is

returned in ord_crit[0]. The base is checked for consistency with respect

to all new ranges. In case of inconsistency, nothing is added to the base.

Set CAR probability base (distance)

Call syntax: CAR_rank_P_base(int crit, int alt, int n_nodes, car_vector

ord_nodes, double dist)

Return information:

OK - number of statements added (also in ord_nodes[0])

ERROR – not activated

 frame not loaded

 input error

 criterion unknown

 not allowed

 alternative unknown

 inconsistent

Call semantics: Statements for all probabilities with the same parent node

are added to the probability base at the same time. ‘crit’ is the criterion

that the probabilities belong to. ‘alt’ is the alternative that all of the

probabilities belong to. ‘n_nodes’ is the number of nodes being compared in

total. ‘dist’ is the distance between the intervals of two adjacent

weights. ‘dist’=0 yields adjacent intervals, ‘dist’>0 yields a gap between

the intervals (with 1 yielding intervals of width zero), and ‘dist’<0

yields an overlap between the intervals (with 1 yielding intervals of

double width). The number of added statements is returned in ord_nodes[0].

The base is checked for consistency concerning all the new ranges. In case

of inconsistency, nothing is added to the base.

UNEDA CAR API Specification - Version 7.21

Copyright 2012-2025 Mats Danielson Page 11 of 11

File UNEDA-CAR 7.21.docx Last saved by mad 2025-06-06 12:00

Error handling

All CAR calls return an integer that serves as an error code and

information carrier at the same time. In the event of an error, a negative

number is returned. The caller should interpret the error code and take

action accordingly. The definitions are found in CAR.h.

CAR_INPUT_ERROR

One of the input parameters contained invalid information.

CAR_ILLEGAL_TREE

Impure trees not allowed in CAR.

CAR_FRAME_NOT_LOADED

An attempt to use frame commands while no frame is loaded.

CAR_WRONG_FRAME_TYPE

An attempt to issue a PS/PM-only command to a DM frame or vice versa.

CAR_STATE_ERROR

A call to DTL is made when CAR is in the wrong initialization state.

CAR_CRIT_UNKNOWN

The requested criterion does not exist.

CAR_ALT_UNKNOWN

The alternative does not exist.

CAR_NOT_ALLOWED

The call is not allowed since the frame was created without car_light set.

CAR_NOT_ACTIVATED

A call to CAR is made when CAR is in the wrong initialisation state.

CAR_INCONSISTENT

The supplied statement is inconsistent.

CAR_ILLEGAL_TREE

The tree structure supplied is invalid.

CAR_SYS_CORRUPT

The internal data structures of CAR are misaligned.

